Search results for "Bayesian inference"
showing 10 items of 120 documents
Calibrating Expert Assessments Using Hierarchical Gaussian Process Models
2020
Expert assessments are routinely used to inform management and other decision making. However, often these assessments contain considerable biases and uncertainties for which reason they should be calibrated if possible. Moreover, coherently combining multiple expert assessments into one estimate poses a long-standing problem in statistics since modeling expert knowledge is often difficult. Here, we present a hierarchical Bayesian model for expert calibration in a task of estimating a continuous univariate parameter. The model allows experts' biases to vary as a function of the true value of the parameter and according to the expert's background. We follow the fully Bayesian approach (the s…
Discard ban: A simulation-based approach combining hierarchical Bayesian and food web spatial models
2020
12 pages, 6 figures, 6 tables, 2 appendixes, supplementary data https://doi.org/10.1016/j.marpol.2019.103703
Thompson Sampling Based Active Learning in Probabilistic Programs with Application to Travel Time Estimation
2019
The pertinent problem of Traveling Time Estimation (TTE) is to estimate the travel time, given a start location and a destination, solely based on the coordinates of the points under consideration. This is typically solved by fitting a function based on a sequence of observations. However, it can be expensive or slow to obtain labeled data or measurements to calibrate the estimation function. Active Learning tries to alleviate this problem by actively selecting samples that minimize the total number of samples needed to do accurate inference. Probabilistic Programming Languages (PPL) give us the opportunities to apply powerful Bayesian inference to model problems that involve uncertainties.…
Predicting marine species distributions: complementarity of food-web and Bayesian hierarchical modelling approaches
2019
16 pages, 9 figures, 3 tables, 1 appendix
Empirical Bayes improves assessments of diversity and similarity when overdispersion prevails in taxonomic counts with no covariates
2019
Abstract The assessment of diversity and similarity is relevant in monitoring the status of ecosystems. The respective indicators are based on the taxonomic composition of biological communities of interest, currently estimated through the proportions computed from sampling multivariate counts. In this work we present a novel method to estimate the taxonomic composition able to work even with a single sample and no covariates, when data are affected by overdispersion. The presence of overdispersion in taxonomic counts may be the result of significant environmental factors which are often unobservable but influence communities. Following the empirical Bayes approach, we combine a Bayesian mo…
Hierarchical log Gaussian Cox process for regeneration in uneven-aged forests
2021
We propose a hierarchical log Gaussian Cox process (LGCP) for point patterns, where a set of points x affects another set of points y but not vice versa. We use the model to investigate the effect of large trees to the locations of seedlings. In the model, every point in x has a parametric influence kernel or signal, which together form an influence field. Conditionally on the parameters, the influence field acts as a spatial covariate in the intensity of the model, and the intensity itself is a non-linear function of the parameters. Points outside the observation window may affect the influence field inside the window. We propose an edge correction to account for this missing data. The par…
Predictive Model Markup Language (PMML) Representation of Bayesian Networks: An Application in Manufacturing
2018
International audience; Bayesian networks (BNs) represent a promising approach for the aggregation of multiple uncertainty sources in manufacturing networks and other engineering systems for the purposes of uncertainty quantification, risk analysis, and quality control. A standardized representation for BN models will aid in their communication and exchange across the web. This article presents an extension to the predictive model markup language (PMML) standard for the representation of a BN, which may consist of discrete variables, continuous variables, or their combination. The PMML standard is based on extensible markup language (XML) and used for the representation of analytical models…
Toward a direct and scalable identification of reduced models for categorical processes.
2017
The applicability of many computational approaches is dwelling on the identification of reduced models defined on a small set of collective variables (colvars). A methodology for scalable probability-preserving identification of reduced models and colvars directly from the data is derived—not relying on the availability of the full relation matrices at any stage of the resulting algorithm, allowing for a robust quantification of reduced model uncertainty and allowing us to impose a priori available physical information. We show two applications of the methodology: (i) to obtain a reduced dynamical model for a polypeptide dynamics in water and (ii) to identify diagnostic rules from a standar…
Efficient Online Laplacian Eigenmap Computation for Dimensionality Reduction in Molecular Phylogeny via Optimisation on the Sphere
2019
Reconstructing the phylogeny of large groups of large divergent genomes remains a difficult problem to solve, whatever the methods considered. Methods based on distance matrices are blocked due to the calculation of these matrices that is impossible in practice, when Bayesian inference or maximum likelihood methods presuppose multiple alignment of the genomes, which is itself difficult to achieve if precision is required. In this paper, we propose to calculate new distances for randomly selected couples of species over iterations, and then to map the biological sequences in a space of small dimension based on the partial knowledge of this genome similarity matrix. This mapping is then used …
New insights in Bayesian Survival Analysis in Ecology
2020
La fauna silvestre está asediada. Y ésta no es solo una frase impactante con la que empezar una tesis, tristemente, es una realidad. En el último siglo, muchas especies han disminuido drásticamente, mientras que otras afrontan su extinción debido, principalmente, a los rápidos cambios (y a gran escala) ocurridos tanto en hábitats como en ecosistemas. El cambio climático, las especies invasoras, la caza ilegal y la sobrepesca son sólo algunas de las principales amenazas que afectan a las poblaciones de animales silvestres en la actualidad. Para abordar este problema, se requiere de un compromiso a todos los niveles, desde las comunidades locales hasta los gobiernos, pasando por los expertos,…